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ZnO Quantum Dots: Physical Properties

and Optoelectronic Applications
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We present a review of the recent theoretical and experimental investigation of excitonic and phonon
states in ZnO quantum dots. A small dielectric constant in ZnO leads to very large exciton binding
energies, while wurtzite crystal structure results in unique phonon spectra different from those in
cubic crystals. The exciton energies and radiative lifetimes are determined in the intermediate
quantum confinement regime, which is pertinent to a variety of realistic ZnO quantum dots produced
by wet chemistry methods. An analytical model for the interface and confined polar optical phonons is
presented for spheroidal quantum dots of different size and barrier materials. The experimental part
of the review covers results of the nonresonant and resonant Raman spectroscopy and photo-
luminescence study of ZnO quantum dots with sizes comparable to or larger than the exciton di-
ameter in ZnO. The origins of the Raman phonon shifts and the mechanisms of the carrier
recombination in ZnO quantum dots are discussed in detail. The reviewed properties of ZnO
quantum dots are important for the proposed optoelectronic applications of these nanostructures.
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1. INTRODUCTION

Nanostructures and heterostructures made of zinc oxide

(ZnO) have already been used as transparent conductors in

solar cells, as components in high-power electronics, UV

light emitters, and gas and chemical sensors. Recently, ZnO

nanostructures attracted attention for possible applications

in optoelectronic and spintronic devices, such as light-

emitting and laser diodes with polarized output, spin-based

memory, and logic. In this review, we describe physical

properties of a specific type of ZnO nanostructure: quantum

dots (QDs). We focus our discussion on the excitonic and

phonon processes in ZnO QDs and their effect on optical

response of these nanostructures. The review contains both

theoretical and experimental results pertinent to ZnO QDs

and their optoelectronic applications.

Compared to other materials with a wide band gap, ZnO

has a very large exciton binding energy (*60 meV), which

results in more efficient excitonic emission at room tem-

perature. Moreover, it is believed that exchange interaction

between spins of acceptor-bound charge carriers can me-

diate room temperature ferromagnetic ordering in ZnO.

Since doping of semiconductor QDs is a rather challeng-

ing task,1 the existence of various unintentional ‘‘useful’’

impurities in ZnO nanostructures may be advantageous

for optoelectronic and spintronic applications. Well-

established colloidal fabrication techniques give ZnO QDs

of nearly spherical shape with diameters less than 10 nm.

Thus, various properties of colloidal ZnO QDs, such as ex-

citon energy and radiative lifetime, are expected to be

strongly affected by quantum confinement. Wurtzite crys-

tal structure and the spherical shape of ZnO QDs are also

expected to result in strong modification of optical phonon

(lattice vibration) modes in comparison with bulk ZnO

phonons.
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2. EXCITONIC PROPERTIES OF
ZINC OXIDE QUANTUM DOTS

Interpretation of experimental data and optimization of

ZnO QDs for optoelectronic device applications require a

theoretical model for prediction of the energy and the

oscillator strength of optical transitions. Due to specifics

of the wurtzite ZnO material system, such as degeneracy

and anisotropy of the valence band as well as small di-

electric constant and correspondingly strong electron-hole

Coulomb interaction, simple one-band effective-mass

models fail to give correct results. Recently, the tight-

binding method has been used to compute the electron and

hole states in ZnO QDs.2 The electron-hole interaction

in Ref. 2 was taken into account by adding the exciton

binding energy of �1:8 e2=e R (Ref. 3) to the energy of

an electron-hole pair. However, Brus4 has shown that the

treatment of an exciton in ZnO QDs as an electron-hole pair

is a rather poor approximation, leading to significant errors.

The pseudopotential model, which was shown to describe

exciton states in a CdSe QD5 very well, to the best of our

knowledge has not been applied to ZnO QDs.

In this section, we focus on the properties of the lowest

excitonic states in colloidal, nearly spherical ZnO QDs

with diameters in the range from 2 to 6 nm. Fonoberov

et al.6 demonstrated that the multiband effective mass

model works surprisingly well for the description of lowest

exciton states even for quantum shells7 as thin as one

monolayer. Here, we employ this model, with some mod-

ifications,8 to calculate the lowest exciton states in ZnO

QDs. In our numerical computations, we have employed

the following effective mass parameters of wurtzite ZnO9:

electron effective mass me¼ 0:24; Rashba-Sheka-Pikus

parameters of the valence band A1¼�3:78, A2¼ �0:44,

A3¼ 3:45, A4¼�1:63, A5¼�1:68, A6¼�2:23,

A7¼ 0:47 nm�1; crystal-field splitting energy Dcr¼ 38

meV; and optical dielectric constant e¼ 3:7. The band gap

energy of wurtzite ZnO is Eg¼ 3:437 eV10. The heavy-

hole effective mass can be estimated as mhh&1= A2j j ¼
2:27, which gives the ratio mhh=me¼ 9:5, in agreement

with the tight-binding calculations.11 Using the reduced

exciton mass l¼memhh=(meþmhh), the exciton Bohr ra-

dius is estimated to be aB¼ 4pe0�h2e=e2m0l¼ 0:90 nm.

Since the exciton Bohr radius aB in bulk ZnO is about

0.9 nm, the size of the considered QDs is two to three

times larger than the size of the bulk exciton. This results

in comparability of the strength of the electron-hole

Coulomb interaction and quantum confinement effects.

Therefore, one cannot use either the ‘‘strong confinement’’

or ‘‘weak confinement’’ approximations12 to obtain exci-

ton states in such ZnO QDs. The strong confinement ap-

proximation (R/aB <*2) assumes that the electron and

hole confinement energies are much larger than the Cou-

lomb interaction energy, and the electron and hole wave
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functions can be treated separately. The weak confinement

limit (R/aB >*4) uses the assumption that Coulomb in-

teraction is strong compared to quantum confinement, and

as a result, the exciton wave function can be decomposed

into the wave function of the exciton center of mass and

the wave function of the relative electron-hole motion.

To determine excitonic states in ZnO QDs in the inter-

mediate confinement regime, which is relevant to the re-

ported experimental data and important for possible device

applications, we solve the six-dimensional exciton prob-

lem. In the case of isotropic nondegenerate conduction and

valence bands, the six-dimensional problem for spherical

QDs can be reduced to a three-dimensional one with in-

dependent variables re, rh, and h¢, where h¢ is the angle

between the electron radius-vector re and hole radius-

vector rh. However, the valence band of ZnO is degenerate

and anisotropic. Therefore, we can only reduce the exciton

problem to a five-dimensional one by making use of the

axial symmetry of exciton wave functions along the c-axis

of wurtzite ZnO. We calculate the exciton states using the

following Hamiltonian:

ĤHexc¼ [ĤHe þ Vs�a(re)]� [ĤHh � Vs�a(rh)]

þ Vint(re, rh),
(1)

where the two-band electron and the six-band hole Ham-

iltonians ĤHe and ĤHh for wurtzite nanocrystals have been

written explicitly in Ref. 13. Since dielectric constants in

ZnO QDs and the exterior medium are different, the

Coulomb potential energy of the electron-hole system in

Eq. (1) is represented by the sum of the electron-hole in-

teraction energy Vint(re,rh) and electron and hole self-

interaction energies Vs�a(re) and Vs�a(rh) defined in Refs.

4 and 14. Neglecting a very small spin-orbit splitting,

which is about 10 meV9, 10 for ZnO, we can simplify the

exciton problem by using the one-band electron and the

three-band hole Hamiltonians.

We choose the coordinate system in such a way that the

z-axis is parallel to the c-axis of wurtzite ZnO. Due to the

axial symmetry of the exciton problem, the z-component

of the exciton angular momentum Mz is a good quantum

number. To compute the eigenstates of the Hamiltonian (1),

we represent the three-component exciton envelope func-

tion in the form

WMz
(re, rh)

¼ 1

2p

X1

m¼�1

WMz,m
�1 (qe, ze; qh, zh) ei(m�1)u · ei(Mz�1)�

WMz,m
0 (qe, ze; qh, zh) eimu · eiMz�

WMz,m
1 (qe, ze; qh, zh) ei(mþ1)u · ei(Mzþ1)�

0
BB@

1
CCA,

(2)

where W�1, W0, and W1 are the components of exciton

envelope function in front of the Bloch functions
��S Xþ iYffiffi

2
p i,

S Zj i, and
��S X�iYffiffi

2
p i, respectively. In Eq. (2), the angles j and

F describe the relative angular motion of the electron

and the hole and their angular motion as a whole, corre-

spondingly. Substitution of the wave function (2) into the

envelope-function equation with Hamiltonian (1) gives the

system of three five-dimensional differential equations

with respect to functions WMz, m
a (qe, ze;qh, zh). The obtained

system is solved numerically using the finite difference

method. In the numerical calculation, we have neglected

the small penetration of the exciton wave function into the

exterior medium.

To validate the model, we calculated exciton ground-

state energy as a function of the QD radius for spherical

ZnO QDs in water and compared it with experimental data

reported in Refs. 15 and 16. As one can see in Figure 1, our

theoretical results are in excellent agreement with mea-

surements. We have studied the influence of the QD shape

and the exterior medium on the exciton ground-state en-

ergy. Transmission electron microscopy (TEM) images of

ZnO QDs show that a fraction of QDs are not spherical but

rather prolate ellipsoids with about a 9/8 ratio of semi-

axes.16 Our calculations show that prolate ZnO QDs have

smaller exciton ground-state energy than spherical QDs

with the same semiminor axis (shown by the dashed line in

Fig. 1). If we consider ZnO QDs in air (e¼ 1) instead of

water (e¼ 1:78), the exciton ground-state energy increases

(shown by the dotted line in Fig. 1). The difference in the

ground-state energies due to the change of the ambient

(water?air) decreases from 70 to 13 meV when the QD

radius increases from 1 to 3 nm. Overall, it is seen from

our calculations that small size dispersion of ZnO QDs and

different exterior media have relatively small influence on

the exciton ground-state energy for the QDs with radius

above 1.5 nm.

Interpretation of experimental data as well as predic-

tion of the optical properties for ZnO QDs require the

Fig. 1. Calculated exciton ground-state energy in ZnO QDs as a function

of the QD radius (semiaxis) for spherical (ellipsoidal) QDs. Results are

shown for two different ambient media: water (e ¼ 1.78) and air (e ¼ 1).

For comparison, we show experimental data points from Refs. 15 and 16.

Reprinted with permission from Ref. 8, V. A. Fonoberov and A. A.

Balandin, Phys. Rev. B, 70, 195410 (2004). # 2004, American Physical

Society.
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knowledge of transition energies and their oscillator

strength. The size dependence of the excited exciton states

in spherical ZnO QDs is shown in Figure 2. The energy of

the excited states is counted from the exciton ground-state

energy. Figure 2 shows the size dependence of a few lowest

exciton states with Mzj j ¼ 0, 1, 2. The oscillator strength f

of an exciton state with energy Eexc and envelope wave

function Wexc(re, rh) is calculated as13

f ¼ EP

Eexc

Z

V

W(a)
exc(r, r)dr

����

����
2

(3)

where the Kane energy of ZnO is EP ¼ 28:2 eV.17 In Eq. (3),

a denotes the component of the wave function active for a

given polarization. In the dipole approximation, only ex-

citon energy levels with Mzj j ¼ 0, 1 can be optically active;

that is, they can have a nonzero oscillator strength. Be-

sides, the exciton energy levels with Mz¼ 0 (Mz¼ – 1) are

optically active only for the polarization e || z (e? z). The

oscillator strengths of the corresponding exciton energy

levels are depicted in Figure 2 with circles. The size of the

circles is proportional to the oscillator strength. We can see

that there are two exciton levels that have large oscillator

strengths. They are the first level with Mzj j ¼ 1, which is

the exciton ground state, and the second level with Mz¼ 0.

The energy difference between the two exciton levels

decreases while their oscillator strengths, which are almost

the same for both levels, increase with the increasing the

QD size. Other exciton energy levels shown in Figure 2

have zero or negligible oscillator strength.

Figure 3 shows the optically active component of the

exciton wave function (with equal electron and hole co-

ordinates) for each of the two brightest exciton states from

Figure 2 for QD radii 1, 2, and 3 nm. For QDs with R > aB,

the electron and hole motion around their center of mass

prevents the center of mass from reaching the QD surface,

thus forming a so-called dead layer near the QD surface.

The concept of the exciton dead layer can be traced back

to Pekar.18 It states that the exciton is totally reflected from

an effective barrier located inside the QD at the distance d

from the QD surface. To estimate the thickness d of the

dead layer in ZnO QDs, we assume that only the optically

active component of the exciton wave function is nonzero,

which allows us to approximate the wave function of the

exciton center of mass as

Wexc(r, r) ¼ 1ffiffiffiffiffiffiffiffi
pa3

B

p sin(pr=(R� d ))

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p(R� d )
p : (4)

Assuming that Eq. (4) correctly reproduces the density of

the exciton’s center of mass, we can find the thickness d of

the dead layer and the exciton Bohr radius aB from the

following system:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8(R� d )3

p2a3
B

s

¼
Z

V

W(a)
exc(r, r) dr,

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a3

B(R� d )3
q ¼ W(a)

exc(0, 0):

8
>>>>><

>>>>>:

(5)

Note that the system of Eq. (5) is an identity when the

optically active component W(a)
exc(r, r) of the wave function

of exciton ground state is given by Eq. (4). The fitting

parameters d and aB found as solutions of system (5) are

plotted in Figure 4 as a function of the radius of ZnO QD

in water. The quality of the fit is illustrated in Figure 5 for

the ZnO/water QD with R¼ 2 nm. It is seen from Figure 4

that the dead-layer thickness d increases almost linearly

with R, while the exciton Bohr radius tends to its bulk

Fig. 2. Energies of the excited exciton states (counted from the exciton

ground state) as a function of the radius of spherical ZnO QDs in wa-

ter. The oscillator strength of the corresponding transitions is depicted

with circles. The size of the circles is proportional to the oscillator

strength.

Fig. 3. Optically active component of the exciton wave function (with

equal electron and hole coordinates) of the first (a) and the second (b)

bright exciton states for three different sizes of spherical ZnO QDs in

water. The c-axis of wurtzite ZnO is directed vertically.
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value (0.9 nm). Figure 3 confirms that the thickness of the

dead layer increases with increasing the QD size. Our

estimate gives the value of the dead-layer thickness

d¼ 1.6 nm for R¼ 3 nm, which almost coincides with the

dead-layer thickness calculated in Ref. 19 for a quantum

well with thickness L� aB and mhh=me ¼ 9:5. The latter

suggests that the thickness of the dead layer for larger ZnO

QDs (i.e., in the weak confinement regime) is not notice-

ably larger than 1.6 nm. The relatively large thickness of

the dead layer in colloidal ZnO QDs is attributed to the

large ratio of hole and electron effective masses.

The fact that the exciton in the spherical ZnO QDs

is prolate along the c-axis (see Fig. 3) is attributed to the

anisotropy of the valence band of wurtzite ZnO. It is also

seen from Figure 3 that the exciton is more prolate for the

second optically active state than it is for the first one. The

exciton center of mass is prolate along the c-axis of

wurtzite ZnO and squeezed to the center of the ZnO QD.

The above behavior of the exciton in a colloidal ZnO QD

should strongly affect the exciton radiative lifetime.

The radiative recombination lifetime s of excitons in

bulk ZnO is about 322 ps,20 which is small compared to

other semiconductors. It is well known that the oscillator

strength of localized excitons is substantially higher than

that of free excitons.21 Since the excitons are confined in

ZnO QDs and the radiative lifetime is inversely propor-

tional to the oscillator strength

s ¼ 2pe0m0c3�h2

ne2E2
exc f

, ð6Þ

one can expect for ZnO QDs very small exciton radiative

lifetimes, on the order of tens of picoseconds. In Eq. (6),

e0, m0, c, �h, and e are fundamental physical constants with

their usual meaning, and n is the refractive index. To the

best of our knowledge, no measurements of the exciton

lifetime in ZnO QDs have been carried out. However, it

has been established that the exciton lifetime is less than

50 ps for ZnO QDs with diameter 5 nm.22

The calculated radiative lifetime of the excitons in the

ground state is shown in Figure 6 as a function of the QD

size. The solid line in Figure 6 represents the radiative

lifetime in the spherical ZnO QD in water, the dashed line

shows the lifetime in the prolate ZnO QD in water, and the

dotted line gives the lifetime in the spherical ZnO QD in

air. For the QD with diameter 5 nm, we obtain a lifetime of

about 38 ps, in agreement with the conclusion in Ref. 22.

We can see that the influence of the QD ellipticity and the

exterior medium on the radiative lifetime in ZnO QDs is

relatively weak. Analyzing the calculated dependence of

the exciton lifetime on the radius of the spherical ZnO

QD in water, we found that it can be fitted accurately

with the function so/[1þ (R/Ro)3], where so¼ 73.4 ps and

Ro¼ 2.55 nm. For larger QDs (i.e., in the weak confine-

ment regime), the exciton lifetime is known to be inversely

proportional to the QD volume. Indeed, in this case sub-

stituting Eq. (4) into Eq. (3), one estimates f* (R� d)3=
a3

B and, therefore, s*a3
B=(R� d)3.

Fig. 4. Fitting parameters for Eq. (4) as a function of ZnO QD radius; d is

the dead layer thickness, and aB is the exciton Bohr radius.

Fig. 5. Wave function of the exciton’s center of mass along x- and z-axes

for the 4-nm diameter ZnO QDs; thin solid line shows a fit by Eq. (4).

Fig. 6. Radiative lifetime of the exciton ground state in ZnO QDs as a

function of the QD radius (semiaxis) for spherical (ellipsoidal) QDs.

Reprinted with permission from Ref. 8, V. A. Fonoberov and A. A.

Balandin, Phys. Rev. B, 70, 195410 (2004). # 2004, American Physical

Society.
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3. SURFACE IMPURITIES AND OPTICAL
PROPERTIES OF ZINC OXIDE
QUANTUM DOTS

Lately, there have been a number of reports of fabrica-

tion and structural and optical characterization of ZnO

QDs.15–16, 22–27 Different fabrication techniques23, 27 and

methods of the QD surface modification24, 26 have been

used to quench the defect-related green photoluminescence

(PL) and enhance the UV emission from ZnO QDs.

However, the nature of the UV PL from ZnO QDs itself is

not fully understood. Some authors attribute the UV PL to

the recombination of confined excitons, while others argue

that the emission comes from surface impurities or defects.

Understanding the origin of UV PL in ZnO QDs is im-

portant from both fundamental science and proposed opto-

electronic applications points of view. In this section, we

address this issue by examining theoretically the optical

properties of ZnO QDs with ionized impurities at the QD

surface. We limit our consideration to spherical QDs with

diameters in the range from 2 to 6 nm.

There are only a few reports on the calculation of exciton

states in the presence of charges at the QD surface.28–30

Usingtheempiricalpseudopotentialmethod,Wangetal.28, 29

studied the influence of an external charge on the electron-

hole pair in the spherical CdSe QD. The electron-hole

interaction in Ref. 29 was averaged so that the exciton

problem was reduced to two single particle problems.

While this is a good approximation for the 4-nm diameter

CdSe QDs, it is not acceptable for ZnO QDs of the same

size. This difference comes from the fact that the exciton

Bohr radius in ZnO is only 0.9 nm. Since the size of ZnO

QDs is only two to three times larger than the size of the

exciton, a two-particle problem has to be solved for an ex-

citon in ZnO QDs. The solution of a two-particle problem

is a challenging task for atomistic tight-binding or pseu-

dopotential methods. On the other hand, the multiband

effective mass method works surprisingly well for the de-

scription of lowest exciton states even for quantum shells

as thin as one monolayer.6 To solve the six-dimensional

exciton problem (it can be reduced to a five-dimensional

one by making use of the axial symmetry of exciton wave

functions along the c-axis in wurtzite ZnO), we employ the

latter method adapted by us for ZnO QDs in Ref. 30.

The exciton Hamiltonian with an ionized impurity pres-

ent at the QD surface is written as

ĤHexc ¼ [ĤHe þ Vs�a(re)]� [ĤHh � Vs�a(rh)]

þ Vint(re, rh)þ a(Vint(R, re)� Vint(R, rh)),
(7)

where the two-band electron and the six-band hole Ham-

iltonians ĤHe and ĤHh for wurtzite nanocrystals can be found

in Ref. 13. In the last term of Eq. (7), R is the radius-vector

of the impurity, and a is the charge of the impurity in units

of |e| (a¼ 1 for a donor and a¼�1 for an acceptor). The

z-axis is chosen to be parallel to the c-axis of wurtzite

ZnO. Therefore, we consider an impurity located on the z-

axis to keep the axial symmetry of the problem. To cal-

culate the exciton states, we neglect the small penetration

of the exciton wave function into the exterior medium and

solve the Schrödinger equation with Hamiltonian (7) using

the finite-difference method14 (a cubic grid with unit length

of 0.05 nm has been used, which ensured the relative error

for the exciton ground-state energy <1%). The material

parameters employed for ZnO have been listed in the

previous section.

The calculated optical properties of ionized donor–

exciton and ionized acceptor–exciton complexes in spher-

ical ZnO QDs are presented in Figure 7. It is seen from

Figure 7a that the dead layer is observed near the QD

surface for the ionized donor–exciton complex. On the con-

trary, Figure 7b shows that the ionized acceptor–exciton

complex is located in the vicinity of the acceptor. This

means that the exciton is bound to the surface-located

acceptor. Unlike the acceptor, the donor does not bind

the exciton (the binding in this case is negligible). Figure

7c and 7d shows the size dependence of the four lowest

exciton energy levels with |M|¼ 0, 1 in the ZnO QDs with

Fig. 7. (a) and (b) Wave functions of exciton center of mass for three

ZnO QDs with different sizes. (c) and (d) Lowest energy levels of

impurity–exciton complexes counted from the exciton ground-state energy

(see Fig. 1). (e) and (f) Corresponding oscillator strengths as a function of

the QD radius. Panels (a), (c), (e) and (b), (d), (f) show the calculated

results in the presence of a donor and an acceptor, respectively. Large dots

show the position of the impurity. Solid (dashed) lines correspond to

|M|¼ 1 (M¼ 0).
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surface impurities. The energy levels are counted from the

ground-state energy of the confined exciton (no impuri-

ties). It is seen that the absolute value of the plotted energy

difference for the donor-exciton complex is small and

decreases with QD size, while this absolute value is much

larger and increases with QD size for the acceptor-exciton

complex. Such a different behavior of the exciton energy

levels is due to the fact that the hole is much heavier than

the electron, which makes the surface donor a shallow

impurity, while the surface acceptor is a deep impurity.

Therefore, excitons can be effectively bound only to sur-

face acceptors.

Figures 7e and 7f show the oscillator strengths of the

exciton energy levels from Figs. 7c and 7d. We can see

that for the confined excitons and ionized donor–exciton

complexes there are two energy levels that have large

oscillator strengths (the first level with |M|¼ 1 and the

second level with M¼ 0). The energy difference between

the two energy levels decreases while their oscillator

strengths, which are almost the same for both levels, in-

crease with increasing QD size. On the other hand, the

oscillator strength of the ground state of the ionized ac-

ceptor–exciton complex is very small and decreases with

QD size. Instead, the second energy level, with |M|¼ 1, has

large oscillator strength with a maximum for a QD with

the radius of about 2 nm.

Summarizing these above observations, one can con-

clude that the absorption edge, which is defined by the first

energy level with |M|¼ 1 for the confined exciton and for

the ionized donor–exciton complex and by the second en-

ergy level with |M|¼ 1 for the ionized acceptor–exciton

complex, depends on the presence of impurities relatively

weakly, and it is only few tens of millielectron volts lower

in energy for the impurity–exciton complexes than it is for

the confined excitons. On the contrary, the position of the

UV PL peak, which is defined by the first energy level with

|M|¼ 1 for all considered cases, is 100–200 meV lower in

energy for the ionized acceptor–exciton complex than it is

for the confined exciton or the ionized donor–exciton

complex. Some of the fabrication techniques (e.g., wet

chemical synthesis16, 22) produce ZnO QDs that have the

UV PL peak position close to the absorption edge. We can

attribute the UV PL in such QDs to confined excitons. The

surface of such QDs may contain donors, which only

slightly affect the UV PL. Other fabrication techniques,

such as wet chemical synthesis in the presence of a poly-

mer,26 produce ZnO QDs that have the UV PL peak red

shifted from the absorption edge as far as a few hundreds of

millielectron volts. We argue that this red shift may be

caused by the presence of acceptors at the surface of ZnO

QDs. The ionized acceptors (e.g., N�) are more likely to be

at the QD surface than inside the QD because the latter

fabrication techniques include some type of surface pas-

sivation. For example, the method described in Ref. 26

produces ZnO QDs capped with the polyvinyl pyrrolidone

(PVP) polymer.

In the following, we suggest that the presence of ac-

ceptors at the surface of ZnO QDs can be determined by

measuring the exciton radiative lifetime. As we men-

tioned, the radiative recombination lifetime s of excitons

in bulk ZnO is about 322 ps. Figure 8 shows the radiative

lifetime as the function of the QD radius for the confined

excitons as well as for the impurity–exciton complexes. It

is seen that the radiative lifetime of the confined exciton

and that of the ionized donor–exciton complex are almost

the same; they decrease with QD size and are about an

order of magnitude less (for R* 2 nm) than the bulk ex-

citon lifetime. On the other hand, the radiative lifetime of

the ionized acceptor–exciton complex increase with QD

size very fast and it is about two orders of magnitude

larger (for R* 2 nm) than bulk exciton lifetime.

Thus, depending on the fabrication technique and ZnO

QD surface quality, the origin of UV PL in ZnO QDs

is either a recombination of confined excitons or surface-

bound ionized acceptor–exciton complexes. In the latter

case the Stokes shift on the order of 100–200 meV should

be observed in the PL spectrum. The exciton radiative

lifetime can be used as a probe of the exciton localization.

4. INTERFACE AND CONFINED OPTICAL
PHONONS IN ZINC OXIDE
QUANTUM DOTS

It is well known that in QDs with zinc blende crystal

structure there exist confined phonon modes with fre-

quencies equal to those of bulk transverse optical (TO) and

longitudinal optical (LO) phonons and interface phonon

modes with frequencies intermediate between those of TO

and LO modes.31 Interface and confined optical phonon

modes have been found for a variety of zinc blende QDs,

such as spherical,31 spheroidal,32, 33 multilayer spherical,34

and even multilayer tetrahedral6 QDs. The calculated fre-

quencies of optical phonon modes have been observed in

the Raman, absorption, and PL spectra of zinc blende

QDs.6, 35 Lately, QDs with wurtzite crystal structure, such

as ZnO nanostructures, have attracted attention as very

Fig. 8. Radiative lifetime of confined excitons (solid line) and impurity–

exciton complexes (dotted and dashed lines) for ZnO QDs as a function of

the QD radius. Reprinted with permission from Ref. 30, V. A. Fonober-

orov and A. A. Balandin. Appl. Phys. Lett., 85, 5971 (2004). # 2004,

American Institute of Physics.

Fonoberov and Balandin ZnO Quantum Dots

R
E

V
IE

W

J. Nanoelectron. Optoelectron. 1, 19–38, 2006 25



Delivered by Ingenta to:
University of California, Riverside Libraries

IP : 216.235.252.114
Fri, 11 Aug 2006 19:16:06

promising candidates for optoelectronic, spintronic, and

biological applications. At the same time, only a few re-

ports have addressed the problem of polar optical phonons

in wurtzite nanostructures.36

The frequencies of optical phonons in small covalent

nanocrystals depend on the nanocrystal size because the

nanocrystal boundary causes an uncertainty in the phonon

wave vector, which results in the red shift and broadening

of the phonon peak. While the above size dependence is

important for very small covalent nanocrystals, it is neg-

ligible in the ionic ZnO QDs with sizes larger than 4 nm.

The last is due to the fact that the polar optical phonons in

ZnO are almost nondispersive in the region of small wave

vectors. Since most of the reported experimental data are

for ZnO QDs with sizes larger than 4 nm, in the following

we assume that the polar optical phonons are nondisper-

sive in the relevant range of the wave vectors. Due to the

uniaxial anisotropy of wurtzite QDs, the confined and in-

terface optical phonon modes in such QDs should be

substantially different from those in zinc blende (isotropic)

QDs.36 The main difference comes from the anisotropy of

the dielectric function of wurtzite crystals. To describe the

dielectric function, we employ the Loudon model, which is

widely accepted for the wurtzite nanostructures.37, 38 For

example, the components of the dielectric tensor of wurt-

zite ZnO are39

e?(x) ¼ e?(1)
x2 � (x?, LO)2

x2 � (x?, TO)2
;

ez(x) ¼ ez(1)
x2 � (xz, LO)2

x2 � (xz, TO)2
,

(8)

where the optical dielectric constants e?(1) and ez(1),

LO phonon frequencies x?, LO and xz, LO, and TO phonon

frequencies x?, TO and xz, TO of bulk wurtzite ZnO

are taken from Ref. 40. The components of the dielec-

tric tensor of some ternary wurtzite crystals, such as

MgxZn1�xO (x < 0.33), have more complex frequency de-

pendence41:

e?(x) ¼ e?(1)
x2 � (x?1, LO)2

x2 � (x?1, TO)2

x2 � (x?2, LO)2

x2 � (x?2, TO)2
;

ez(x) ¼ ez(1)
x2 � (xz, LO)2

x2 � (xz, TO)2
:

(9)

The corresponding material parameters from Eq. (9) for

bulk wurtzite Mg0.2Zn0.8O are also taken from Ref. 40.

Zone center optical phonon frequencies of wurtzite ZnO

and Mg0.2Zn0.8O are shown in Figure 9. Since there are only

two zone center optical phonon frequencies (one LO and

one TO) in zinc blende crystals, the phonon band structure

of wurtzite crystals is more complex than that of zinc blende

crystals. It is shown in the following that the last fact leads

to polar optical phonon modes in wurtzite QDs that are

strongly different from those in zinc blende QDs.

The description of the interface and confined polar op-

tical phonons in this section mostly follows our derivation

given in Refs. 36 and 40. First, we present the analytical

derivation of the polar optical phonon modes in spheroi-

dal QDs with wurtzite crystal structure. Then, we apply

our theory to a freestanding spheroidal ZnO QD and to

a spheroidal ZnO QD embedded into a Mg0.2Zn0.8O crystal.

Let us consider a spheroidal QD with wurtzite crystal

structure and with semiaxes a and c. The coordinate sys-

tem (x, y, z0) is chosen in such a way that the semiaxis c

is directed along the symmetry axis z0 of the QD. The

equation of the QD surface is

x2 þ y2

a2
þ z¢2

c2
¼ 1: (10)

After we introduce a new coordinate z such as

z¢ ¼ c

a
z (11)

and transform the new Cartesian coordinates (x, y, z) into

spherical coordinates (r, �, f), Eq. (10) of the QD surface

becomes r¼ a. In the following description, we assume

that the QD (medium k¼ 1) is embedded in a wurtzite

crystal (medium k¼ 2). A freestanding QD can be easily

considered as a special case.

Within the framework of the dielectric-continuum ap-

proximation, the potential V(r) of polar optical phonons

Fig. 9. Zone center optical phonon frequencies of ZnO and Mg0.2 Zn0.8O.

Shaded regions correspond to the condition g(o)< 0 [see Eq. (22)]. Cross-

hatched regions correspond to the condition g(o) < 0 for ZnO and

g(o) > 0 for Mg0.2Zn0.8O.
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satisfies Maxwell’s equation, which can be written in the

coordinates r ¼ (x, y, z) as

�r(êe(x, r)rV(r)) ¼ 0 (12)

with the dielectric tensor êe(x; r) defined as

êe(x, r) ¼
e?(x, r) 0 0

0 e?(x, r) 0

0 0 a2

c2 ez(x, r)

0

@

1

A: (13)

Note that the term a2=c2 appears in Eq. (13) due to the

coordinate transformation (11). The dielectric tensor (13)

is constant in both media:

êe(x, r) ¼ êe1(x), r � a;

êe2(x), r> a,

�
(14)

therefore it is convenient to split Eq. (12) into separate

equations for each medium:

�r êek(x)rVk(r)ð Þ ¼ 0; k ¼ 1, 2 (15)

and apply the corresponding boundary conditions:

V1(a, h, /) ¼ V2(a, h, /); (16)

D1(a, h, /) ¼ D2(a, h, /), (17)

where the projections of the displacement vector D on

the outer normal n at the QD surface can be written as

Dk(a, h, /) ¼ (nðr)êek(x)rVk(r))jr¼ a; k ¼ 1, 2: (18)

The phonon potential V1(r) that satisfies Eq. (15) and is

finite everywhere inside the QD can be found analytically

in spheroidal coordinates (n1, g1, /):

V1(r) ¼ Pm
l (n1)

Pm
l (n(0)

1 )
Pm

l (g1) eim/: (19)

Analogously, the phonon potential V2(r) that satisfies Eq.

(15) and vanishes far away from the QD can be found

analytically in spheroidal coordinates (n2, g2, /):

V2(r) ¼ Qm
l (n2)

Qm
l (n(0)

2 )
Pm

l (g2) eim/: (20)

In Eqs. (19) and (20), Pm
l and Qm

l are associated Legendre

functions of the first and second kinds, respectively; the

integers l (l � 0) and m ( mj j � l ) are quantum numbers of

the phonon mode. The spheroidal coordinates (nk, gk) are

related to the spherical coordinates (r, �) as

r sin h¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

gk(x)
� 1

� �
(n2

k � 1)

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

k

q
,

r cos h¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gk(x)

p
nk gk,

8
>><

>>:
(21)

where k¼ 1, 2 and

gk(x) ¼ a2

c2

e(k)
z (x)

e(k)
? (x)

: (22)

The range of the spheroidal coordinate gk is �1 � gk � 1.

Depending on the value of the function (22), the spheroidal

coordinate nk can have the following range:

0< nk < 1 if gk(x)< 0;

nk > 1 if 0< gk(x)< 1;

ink > 0 if gk(x)> 1:

ð23Þ

According to Eq. (21), the QD surface r¼ a is defined in

the spheroidal coordinates as

nk ¼ n(0)
k � 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gk(x)

p
,

gk ¼ cos h:

(
(24)

Therefore, the part of the phonon potential V1(r) defined by

Eq. (19) and the part of the phonon potential V2(r) defined

by Eq. (20) coincide at the QD surface. Thus, the first

boundary condition, given by Eq. (16), is satisfied.

Now, let us find the normal component of the displace-

ment vector D at the QD surface. According to Eq. (18),

Dk(a, h, /) ¼ e(k)
? (x)

�
(gk(x) cos2 hþ sin2 h)

qVk

qr

����
r¼ a

þ 1� gk(x)

a
sin h cos h

qVk

qh

����
r¼a

�
:

(25)

Using relation (21) between the coordinates (nk, gk) and

(r, �), we can calculate each of the two partial derivatives

from Eq. (25):

qVk

qr

����
r¼a

¼ 1

a(gk(x) cos2 hþ sin2 h)

·

"
gk(x)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� gk(x)
p qVk

qnk

����� nk ¼ n(0)
k

gk ¼ cos h

þ cos h sin2 h(1� gk(x))
qVk

qgk

����� nk ¼ n(0)
k

gk ¼ cos h

#
,

(26)
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qVk

qh

����
r¼ a

¼ �sin h
qVk

qgk

���� nk ¼ n(0)
k

gk ¼ cos h

: (27)

Substituting Eqs. (27) and (28) into Eq. (25), one obtains a

simple formula:

Dk(a, h, /) ¼ e(k)
? (x)gk(x)

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gk(x)
p qVk

qnk

����� nk ¼ n(0)
k

gk ¼ cos h

: (28)

Finally, using the explicit form of the phonon potentials

(19) and (20) as well as Eqs. (22) and (24), one can rewrite

Eq. (28) as

D1(a, h, /) ¼ a

c2

e(1)
z (x)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g1(x)
p d ln Pm

l (n1)

dn1

�����
n1 ¼ n(0)

1

· Pm
l ( cos h) eim/;

(29)

D2(a, h, /) ¼ a

c2

e(2)
z (x)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2(x)
p d ln Qm

l (n2)

dn2

�����
n2 ¼ n(0)

2

· Pm
l ( cos h) eim/:

(30)

Substituting Eqs. (29) and (30) into the second boundary

condition (17), one can see that it is satisfied only when the

following equality is true:

e(1)
z (x) n

d ln Pm
l (n)

dn

� �����
n¼1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�g1(x)
p

¼ e(2)
z (x) n

d ln Qm
l (n)

dn

� �����
n¼1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�g2(x)
p :

(31)

Thus, we have found the equation that defines the spec-

trum of polar optical phonons in a wurtzite spheroidal QD

embedded in a wurtzite crystal. Note that Eq. (31) can also

be obtained using a completely different technique devel-

oped by us for wurtzite nanocrystals of arbitrary shape.36 It

should be pointed out that, for a spheroidal QD with zinc

blende crystal structure, e(k)
? (x) ¼ e(k)

z (x) � e(k)(x), and

Eq. (31) reduces to the one obtained in Refs. 32 and 33.

The fact that the spectrum of polar optical phonons does

not depend on the absolute size of a QD31, 32 is also seen

from Eq. (31).

The case of a freestanding QD is no less important for

practical applications. In this case, the dielectric tensor of

the exterior medium is a constant eD � e(2)
z (x) ¼ e(2)

? (x).

Therefore, using the explicit form of associated Legendre

polynomials Pm
l and omitting the upper index (1) in the

components of the dielectric tensor of the QD, we can

represent Eq. in the following convenient form:

X
l� mj j

2½ �

n¼ 0

c2

a2

e?(x)

eD

mj j þ ez(x)

eD

(l� mj j � 2n)� f
mj j

l

a

c

� 	� �

·
l� mj j

2n

� �
(2n� 1)!! (2l� 2n� 1)!!

(2l� 1)!!

·
a2

c2

ez(x)

e?(x)
� 1

� �n

¼ 0, (32)

where

f m
l (a) ¼ n

d ln Qm
l (n)

dn

����
n¼ 1=

ffiffiffiffiffiffiffiffi
1�a2
p : (33)

It can be shown that the function f m
l (a) increases mono-

tonely from �1 to 0 when a increases from 0 to 1. As

seen from Eq. (32), there are no phonon modes with l¼ 0,

and all phonon frequencies with m 6¼ 0 are twice degen-

erate with respect to the sign of m. For a spherical (a ¼ 1)

freestanding QD, one has to take the limit n!1 in Eq.

(33), which results in f m
l (1) ¼ �(lþ 1). Thus, in the case

of a zinc blende spherical QD [e?(x) ¼ ez(x) � e(x);

a¼ c], Eq. (32) gives the well-known equation e(x)=eD ¼
�1� 1=l derived in Ref. 31.

Now, let us consider freestanding spheroidal ZnO QDs

and examine the phonon modes with quantum numbers

l¼ 1, 2, 3, 4 and m¼ 0, 1. The components of the di-

electric tensor of wurtzite ZnO are given by Eq. (8). The

exterior medium is considered to be air with eD ¼ 1.

Figure 10a shows the spectrum of polar optical phonons

with m¼ 0, and Figure 10b shows the spectrum of polar

optical phonons with m¼ 1. The frequencies with even l

are plotted with solid curves, while the frequencies with

odd l are plotted with dashed curves. The frequencies in

Figure 10 are found as solutions of Eq. 32 and are plotted

as a function of the ratio of the spheroidal semiaxes a and

c. Thus, in the leftmost part of the plots we have the

phonon spectrum for a spheroid degenerated into a vertical

line segment. Farther to the right, we have the spectrum for

prolate spheroids. In the central part of the plots, we have

the phonon spectrum for a sphere. Farther on, we have the

spectrum for oblate spheroids; and in the rightmost part

of the plots, we have the phonon spectrum for a spheroid

degenerated into a horizontal flat disk.

The calculated spectrum of phonons in the freestanding

ZnO QDs can be divided into three regions: confined TO

phonons (xz, TO <x<x?, TO), interface phonons (x?, TO <
x<xz, LO), and confined LO phonons (xz, LO <x<
x?, LO). The division into confined and interface phonons is

based on the sign of the function g(x) [see Eq. (22)]. We call

the phonons with eigenfrequency x interface phonons if
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g(x)> 0 and confined phonons if g(x)< 0. To justify the

classification of phonon modes as interface and confined

ones based on the sign of the function g1(x), let us consider

the phonon potential (19) inside the QD. If g1(x)< 0, then

according to Eq. (23), 0< n1 < 1; therefore, Pm
l (n1) is an

oscillatory function of n1, and the phonon potential (19)

is mainly confined inside the QD. On the contrary, if

g1(x)> 0, then according to Eq. (23), n1 > 1 or in1 > 0;

therefore, Pm
l (n1) increases monotonely with n1 as nl

1,

reaching the maximum at the QD surface together with

the phonon potential (19). Note that vertical frequency

scale in Figure 10 is different for confined TO, interface,

and confined LO phonons. The true scale is shown in

Figure 9.

Analyzing Eq. (32), one can find that for each pair (l, m)

there is one interface optical phonon and l� mj j confined

optical phonons for m 6¼ 0 (l� 1 for m¼ 0). Therefore, we

can see four interface phonons and six confined phonons

for both m¼ 0 and m¼ 1 in Figure 10. However, one can

see that there are four confined LO phonons with m¼ 0 and

only two confined LO phonons with m¼ 1. On the contrary,

there are only two confined TO phonons with m¼ 0 and

four confined TO phonons with m¼ 1 in Figure 10.

When the shape of the spheroidal QD changes from the

vertical line segment to the horizontal flat disk, the fre-

quencies of all confined LO phonons decrease from x?, LO

to xz, LO. At the same time, the frequencies of all confined

TO phonons increase from xz, TO to x?, TO. It is also seen

from Figure 10 that, for very small ratios a=c, which is the

case for so-called quantum rods, the interface phonons

with m¼ 0 become confined TO phonons, while the fre-

quencies of all interface phonons with m¼ 1 degenerate

into a single frequency. When the shape of the spheroidal

QD changes from the vertical line segment to the hori-

zontal flat disk, the frequencies of interface phonons with

odd l and m¼ 0 increase from xz, TO to xz, LO, while the

frequencies of interface phonons with even l and m¼ 0

increase for prolate spheroids starting from xz, TO, like for

the phonons with odd l, but they further decrease up to

x?, TO for oblate spheroids. On the contrary, when the

shape of the spheroidal QD changes from the vertical line

segment to the horizontal flat disk, the frequencies of in-

terface phonons with odd l and m¼ 1 decrease from a

single interface frequency to x?, TO, while the frequencies

of interface phonons with even l and m¼ 1 decrease for

prolate spheroids starting from a single frequency, like for

the phonons with odd l, but they further increase up to

xz;LO for oblate spheroids.

In the following, we study phonon potentials corre-

sponding to the polar optical phonon modes with l¼ 1, 2,

3, 4 and m¼ 0. In Figure 11, we present the phonon po-

tentials for a spherical freestanding ZnO QD. The phonon

potentials for QDs with arbitrary spheroidal shapes can

be found analogously using Eqs. (19) and (20) and the co-

ordinate transformation (11). As seen from Figure 11, the

confined LO phonons are indeed confined inside the QD.

However, unlike confined phonons in zinc blende QDs,

confined phonons in wurtzite QDs slightly penetrate into

the exterior medium. The potential of interface phonon

modes is indeed localized near the surface of the wurtzite

QD. While there are no confined TO phonons in zinc blende

QDs, they appear in wurtzite QDs. It is seen from Figure 11

that confined TO phonons are indeed localized mainly in-

side the QD. However, they penetrate into the exterior

medium much stronger than confined LO phonons.

Figure 12 shows the calculated spectrum of polar optical

phonons with l¼ 1, 2, 3, 4 and m¼ 0 in a spherical

wurtzite ZnO QD as a function of the optical dielectric

Fig. 10. Frequencies of polar optical phonons with l ¼ 1, 2, 3, 4 and

m ¼ 0 (a) or m ¼ 1 (b) for a freestanding spheroidal ZnO QD as a

function of the ratio of spheroidal semiaxes. Solid curves correspond to

phonons with even l, and dashed curves correspond to phonons with odd l.

Frequency scale is different for confined TO, interface, and confined LO

phonons.
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constant of the exterior medium eD. It is seen from Figure

12 that the frequencies of interface optical phonons de-

crease substantially when eD changes from the vacuum’s

value (eD¼ 1) to the ZnO nanocrystal’s value (eD¼ 3:7).

At the same time, the frequencies of confined optical

phonons decrease only slightly with eD.

Using the theory of excitonic states in wurtzite QDs, it

can be shown that the dominant component of the wave

function of the exciton ground state in spheroidal ZnO

QDs is symmetric with respect to the rotations around the

z-axis or reflection in the xy-plane. Therefore, the selection

rules for the polar optical phonon modes observed in the

resonant Raman spectra of ZnO QDs are m¼ 0 and l¼ 2,

4, 6, . . . . The phonon modes with higher symmetry

(smaller quantum number l) are more likely to be observed

in the Raman spectra. It is seen from Figure 11 that the

confined LO phonon mode with l¼ 2, m¼ 0 and the

confined TO mode with l¼ 4, m¼ 0 are the confined

modes with the highest symmetry among the confined LO

and TO phonon modes, correspondingly. Therefore, they

should give the main contribution to the resonant Raman

spectrum of spheroidal ZnO QDs.

In fact, the above conclusion has an experimental con-

firmation. In the resonant Raman spectrum of spherical

ZnO QDs with diameter 8.5 nm from Ref. 42, the main

Raman peak in the region of LO phonons has the fre-

quency 588 cm�1, and the main Raman peak in the region

of TO phonons has the frequency 393 cm�1 (see large dots

in Fig. 12). In accordance with Figure 12, our calculations

give the frequency 587.8 cm�1 of the confined LO pho-

non mode with l¼ 2, m¼ 0 and the frequency 393.7 cm�1

of the confined TO phonon mode with l¼ 4, m¼ 0.

This excellent agreement of the experimental and calcu-

lated frequencies allows one to predict the main peaks

in the LO and TO regions of a Raman spectra of sphe-

roidal ZnO QDs using the corresponding curves from

Figure 10.

It is illustrative to consider spheroidal ZnO QDs em-

bedded into an Mg0.2Zn0.8O crystal. The components of

the dielectric tensors of wurtzite ZnO and Mg0.2Zn0.8O are

given by Eqs. (8) and (9), correspondingly. The relative

position of optical phonon bands of wurtzite ZnO and

Mg0.2Zn0.8O is shown in Figure 9. It is seen from Eq. (22)

that g1(x)< 0 inside the shaded region corresponding to

ZnO in Figure 9 and g2(x)< 0 inside the shaded region

corresponding to Mg0.2Zn0.8O. As it has been shown, the

frequency region where g1(x)< 0 corresponds to confined

phonons in a freestanding spheroidal ZnO QD. However,

there can be no confined phonons in the host Mg0.2Zn0.8O

crystal. Indeed, there are no physical solutions of Eq. (31)

Fig. 11. Cross sections of phonon potentials corresponding to polar optical phonon modes with l ¼ 1, 2, 3, 4 and m ¼ 0 for the freestanding spherical

ZnO QDs. Z-axis is directed vertically. Blue and red colors denote negative and positive values of phonon potentials, correspondingly. Black circle

represents the QD surface.
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when g2(x)< 0. The solutions of Eq. (31) are nonphysical

in this case because the spheroidal coordinates (n2, g2)

defined by Eq. (21) cannot cover the entire space outside

the QD. If we allow the spheroidal coordinates (n2, g2) to

be complex, then the phonon potential outside the QD be-

comes complex and diverges logarithmically when n2 ¼ 1;

the latter is clearly nonphysical. It can be also shown that

Eq. (31) does not have any solutions when g1(x)> 0 and

g2(x)> 0. Therefore, the only case when Eq. (31) allows

for physical solutions is g1(x)< 0 and g2(x)> 0. The fre-

quency regions that satisfy the latter condition are cross-

hatched in Figure 9. There are two such regions:

x(1)
z, TO <x<x(2)

z, TO and x(1)
z, LO <x< x(2)

z, LO, which are fur-

ther called the regions of TO and LO phonons, respectively.

Let us now examine the LO and TO phonon modes with

quantum numbers l¼ 1, 2, 3, 4 and m¼ 0, 1. Figure 13a

shows the spectrum of polar optical phonons with m¼ 0,

and Figure 13b shows the spectrum of polar optical phonons

with m¼ 1. The frequencies with even l are plotted with

solid curves, while the frequencies with odd l are plotted

with dashed curves. The frequencies in Figure 13 are found

as solutions of Eq. (31) and are plotted as a function of the

ratio of the spheroidal semiaxes a and c, similar to Figure 10

for the freestanding spheroidal ZnO QD. Note that vertical

frequency scale in Figure 13 is different for TO phonons

and LO phonons. The true scale is shown in Figure 9.

Comparing Figure 13a with Figure 10a and Figure 13b

with Figure 10b, we can see the similarities and distinc-

tions in the phonon spectra of the ZnO QD embedded into

the Mg0.2Zn0.8O crystal and that of the freestanding ZnO

QD. For a small ratio a=c, we have the same number of TO

phonon modes with the frequencies originating from x(1)
z, TO

for the embedded and freestanding ZnO QDs. With the

increase of the ratio a=c, the frequencies of TO phonons

increase for both embedded and freestanding ZnO QDs,

but the number of TO phonon modes gradually decreases

in the embedded ZnO QD. When a=c!1, only two

phonon modes with odd l are left for m¼ 0, and two

phonon modes with even l are left for m¼ 1. The fre-

quencies of these phonon modes increase up to x(2)
z, TO when

a=c!1. However, for this small ratio c=a, we have the

same number of LO phonon modes with the frequencies

originating from x(1)
z, LO for the embedded and freestanding

ZnO QDs. With the increase of the ratio c=a, the

Fig. 12. Spectrum of several polar optical phonon modes in spherical

wurtzite ZnO nanocrystals as a function of the optical dielectric constant

of the exterior medium. Note that the scale of frequencies is different for

confined LO, interface, and confined TO phonons. Large red dots show

the experimental points from Ref. 42.

Fig. 13. Frequencies of polar optical phonons with l¼ 1, 2, 3, 4 and

m¼ 0 (a) or m¼ 1 (b) for a spheroidal ZnO/Mg0.2Zn0.8O QD as a function

of the ratio of spheroidal semiaxes. Solid curves correspond to phonons

with even l, and dashed curves correspond to phonons with odd l. Fre-

quency scale is different for TO and LO phonons. Frequencies xz, TO and

xz, LO correspond to ZnO, and frequencies x0z, TO and x0z, LO correspond to

Mg0.2Zn0.8O.
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frequencies of all LO phonons increase for the embedded

ZnO QD, and the number of such phonons gradually

decreases. When c=a!1, there are no phonons left for

the embedded ZnO QD. At the same time, for the free-

standing ZnO QD, with the increase of the ratio c=a, the

frequencies of two LO phonons with odd l and m¼ 0 and

two LO phonons with even l and m¼ 1 decrease and go

into the region of interface phonons.

It is seen from the preceding paragraph that for the ZnO

QD with a small ratio c=a embedded into the Mg0.2Zn0.8O

crystal the two LO and two TO phonon modes with odd l

and m¼ 0 and with even l and m¼ 1 may correspond to

interface phonons. To check this hypothesis, we further

studied phonon potentials corresponding to the polar opti-

cal phonon modes with l¼ 1, 2, 3, 4 and m¼ 0. In Figure

14, we present the phonon potentials for the spheroidal

ZnO QD with the ratio c=a¼ 1=4 embedded into the

Mg0.2Zn0.8O crystal. The considered ratio c=a¼ 1=4 of the

spheroidal semiaxes is a reasonable value for epitaxial

ZnO/Mg0.2Zn0.8O QDs. It is seen in Figure 14 that the LO

phonon with l¼ 1, one of the LO phonons with l¼ 3, and

all two TO phonons are indeed interface phonons since they

achieve their maximal and minimal values at the surface of

the ZnO QD. It is interesting that the potential of interface

TO phonons is strongly extended along the z-axis, while the

potential of interface LO phonons is extended in the xy-

plane. All other LO phonons in Figure 14 are confined. The

most symmetrical phonon mode is, again, the one with l¼ 2

and m¼ 0. Therefore, it should give the main contribution

to the Raman spectrum of oblate spheroidal ZnO QDs

embedded into the Mg0.2Zn0.8O crystal. Unlike for free-

standing ZnO QDs, no pronounced TO phonon peaks are

expected for the embedded ZnO QDs.

5. RAMAN SPECTRA OF ZINC OXIDE
QUANTUM DOTS

Both resonant and nonresonant Raman scattering spectra

have been measured for ZnO QDs. Due to the wurtzite

crystal structure of bulk ZnO, the frequencies of both LO

and TO phonons are split into two frequencies with sym-

metries A1 and E1. In ZnO, in addition to LO and TO

phonon modes, there are two nonpolar Raman active pho-

non modes with symmetry E2. The low-frequency E2 mode

is associated with the vibration of the heavy Zn sublattice,

while the high-frequency E2 mode involves only the oxygen

atoms. The Raman spectra of ZnO nanostructures always

show shift of the bulk phonon frequencies.24, 42 The origin

of this shift, its strength, and dependence on the QD di-

ameter are still the subjects of debate. Understanding the

nature of the observed shift is important for interpretation of

the Raman spectra and understanding properties of ZnO

nanostructures.

In the following, we present data that clarify the origin

of the peak shift. There are three main mechanisms that

can induce phonon peak shifts in ZnO nanostructures:

(1) spatial confinement within the QD boundaries; (2)

phonon localization by defects (oxygen deficiency, zinc

excess, surface impurities, etc.); or (3) laser-induced

heating in nanostructure ensembles. Usually, only the first

Fig. 14. Cross sections of phonon potentials corresponding to polar optical phonon modes with l ¼ 1, 2, 3, 4 and m ¼ 0 for the oblate spheroidal ZnO/

Mg0.2Zn0.8O QDs with aspect ratio 1/4. Z-axis is directed vertically. Blue and red colors denote negative and positive values of phonon potentials,

correspondingly. Black ellipse represents the QD surface.
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mechanism, referred to as optical phonon confinement, is

invoked as an explanation for the phonon frequency shifts

in ZnO nanostructures.42

The optical phonon confinement was originally intro-

duced to explain the observed frequency shift in small co-

valent semiconductor nanocrystals. It attributes the red

shift and broadening of the Raman peaks to the relaxation

of the phonon wave vector selection rule due to the finite

size of the nanocrystals.43 It has been recently shown

theoretically by us36, 40 that, while this phenomenological

model is justified for small covalent nanocrystals, it cannot

be applied to ionic ZnO QDs with the sizes larger than

4 nm. The last is due to the fact that the polar optical

phonons in ZnO are almost nondispersive in the region of

small wave vectors. In addition, the asymmetry of the

wurtzite crystal lattice leads to the QD shape-dependent

splitting of the frequencies of polar optical phonons in a

series of discrete frequencies. Here, we argue that all three

aforementioned mechanisms contribute to the observed

peak shift in ZnO nanostructures, and that in many cases,

the contribution of the optical phonon confinement can be

relatively small compared to other mechanisms.

We carried out systematic nonresonant and resonant

Raman spectroscopy of ZnO QDs with a diameter of 20 nm

together with the bulk reference sample. The experimental

Raman spectroscopy data for ZnO QDs presented in this

section are mostly taken from a study reported by Alim,

Fonoberov, and Balandin.44 To elucidate the effects of

heating, we varied the excitation laser power over a wide

range. The reference wurtzite bulk ZnO crystal (Univer-

sity Wafers) had dimensions 5� 5� 0.5 mm3 with a-plane

(11–20) facet. The investigated ZnO QDs were produced by

the wet chemistry method. The dots had nearly spherical

shape with an average diameter of 20 nm and good crys-

talline structure, as evidenced by the TEM study. The purity

of ZnO QDs in a powder form was 99.5%. A Renishaw

micro-Raman spectrometer 2000 with visible (488-nm)

and UV (325-nm) excitation lasers was employed to mea-

sure the nonresonant and resonant Raman spectra of ZnO,

respectively. The number of gratings in the Raman spec-

trometer was 1800 for visible laser and 3000 for UV laser.

All spectra were taken in the backscattering configuration.

The nonresonant and resonant Raman spectra of bulk

ZnO crystal and ZnO QD sample are shown in Figures 15

and 16, respectively. A compilation of the reported fre-

quencies of Raman active phonon modes in bulk ZnO

gives the phonon frequencies 102, 379, 410, 439, 574 cm,

and 591 cm�1 for the phonon modes E2(low), A1(TO),

E1(TO), E2(high), A1(LO), and E1(LO), correspondingly.44

In our spectrum from the bulk ZnO, the peak at 439 cm�1

corresponds to E2(high) phonon, while the peaks at 410

and 379 cm�1 correspond to E1(TO) and A1(TO) phonons,

respectively. No LO phonon peaks are seen in the spec-

trum of bulk ZnO. On the contrary, no TO phonon peaks

are seen in the Raman spectrum of ZnO QDs. In the QD

spectrum, the LO phonon peak at 582 cm�1 has a fre-

quency intermediate between those of A1(LO) and E1(LO)

phonons, which is in agreement with theoretical calcula-

tions.36, 40 The broad peak at about 330 cm�1 seen in both

spectra in Figure 15 is attributed to the second-order Ra-

man processes.

The E2(high) peak in the spectrum of ZnO QDs is red

shifted by 3 cm�1 from its position in the bulk ZnO

spectrum (see Fig. 15). Since the diameter of the examined

ZnO QDs is relatively large, such pronounced red shift of

the E2 (high) phonon peak can hardly be attributed only to

the optical phonon confinement by the QD boundaries.

Measuring the anti-Stokes spectrum and using the rela-

tionship between the temperature T and the relative in-

tensity of Stokes and anti-Stokes peaks IS=IAS � exp [�hx=
kBT], we have estimated the temperature of the ZnO QD

powder under visible excitation to be below 508C. Thus,

heating in the nonresonant Raman spectra cannot be re-

sponsible for the observed frequency shift. Therefore, we

conclude that the shift of E2 (high) phonon mode is due to

the presence of intrinsic defects in the ZnO QD samples,

which have about 0.5% impurities. This conclusion was

supported by a recent study 45 that showed a strong de-

pendence of the E2 (high) peak on the isotopic composition

of ZnO.

Figure 16a and 16b show the measured resonant Raman

scattering spectra of bulk ZnO and ZnO QDs, respectively.

A number of LO multiphonon peaks are observed in both

resonant Raman spectra. The frequency 574 cm�1 of 1LO

phonon peak in bulk ZnO corresponds to A1(LO) phonon,

which can be observed only in the configuration when the c-

axis of wurtzite ZnO is parallel to the sample face. When the

c-axis is perpendicular to the sample face, the E1(LO)

phonon is observed instead. According to the theory of

polar optical phonons in wurtzite nanocrystals presented in

the previous section, the frequency of 1LO phonon mode in

ZnO QDs should be between 574 and 591 cm�1. However,

Figure 16b shows that this frequency is only 570 cm�1. The

observed red shift of the 1LO peak in the powder of ZnO

QDs is too large to be caused by intrinsic defects or

Fig. 15. Nonresonant Raman scattering spectra of bulk ZnO (a-plane)

and ZnO QDs (20-nm diameter). Laser power is 15 mW. Linear back-

ground is subtracted for the bulk ZnO spectrum.
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impurities. The only possible explanation for the observed

red shift is a local temperature raise induced by UV laser in

the powder of ZnO QDs.46 To check this assumption, we

varied the UV laser power as well as the area of the illu-

minated spot on the ZnO QD powder sample.

Figure 17 shows the LO phonon frequency in the

powder of ZnO QDs as a function of UV laser power for

two different areas of the illuminated spot. It is seen from

Figure 17 that, for the illuminated 11-mm2 spot, the red

shift of the LO peak increases almost linearly with UV

laser power and reaches about 7 cm�1 for the excitation

laser power of 20 mW. As expected, by reducing the area

of the illuminated spot to 1.6 mm2, we get a faster increase

of the LO peak red shift with the laser power. In the latter

case, the LO peak red shift reaches about 14 cm�1 for a

laser power of only 10 mW. An attempt to measure the LO

phonon frequency using the illuminated spot with an area

1.6 mm2 and UV laser power 20 mW resulted in the de-

struction of the ZnO QDs on the illuminated spot, which

was confirmed by the absence of any ZnO signature peaks

in the measured spectra at any laser power.

It is known that the melting point of ZnO powders is

substantially lower than that of a ZnO crystal (*20008C),

which results in the ZnO powder evaporation at a tem-

perature less than 14008C.47 The density of the examined

ensemble of ZnO QDs is only about 8% of the density of

ZnO crystal, which means that there is a large amount of

air between the QDs and therefore very small thermal

conductivity of the illuminated spot. This explains the

origin of such strong excitation laser heating effect on the

Raman spectra of ZnO QDs.

If the temperature rise in our sample is proportional to

the UV laser power, then the observed 14 cm�1 LO pho-

non red shift should correspond to a temperature rise

around 7008C at the sample spot of an area 1.6 mm2 illu-

minated by the UV laser at a power of 10 mW. In this case,

the increase of the laser power to 20 mW would lead to the

temperature of about 14008C and the observed destruction

of the QD sample spot. To verify this conclusion, we

calculated the LO phonon frequency of ZnO as a function

of temperature. Taking into account the thermal expansion

and anharmonic coupling effects, the LO phonon fre-

quency can be written as48

x(T ) ¼ exp �c
Z T

0

2a?(T ¢)þ ak(T
0)


 �
dT ¢

� �

· (x0 �M1 �M2)þM1 1þ 2

e�hx0=2kBT � 1

� �

þM2 1þ 3

e�hx0=3kBT � 1
þ 3

(e�hx0=3kBT � 1)2

� �
,

(34)

where the Grüneisen parameter of the LO phonon in ZnO

g¼ 1.4,49 the thermal expansion coefficients a?(T) and

ak(T) for ZnO are taken from Ref. 50, and the anharmo-

nicity parameters M1 and M2 are assumed to be equal to

those of the A1(LO) phonon of GaN48: M1¼� 4.14 cm�1,

Fig. 17. LO phonon frequency shift in ZnO QDs as a function of the

excitation laser power. Laser wavelength is 325 nm. Circles and triangles

correspond to the illuminated sample areas of 11 and 1.6 mm2.

Fig. 16. Resonant Raman scattering spectra of (a) a-plane bulk ZnO and

(b) ZnO QDs. Laser power is 20 mW for bulk ZnO and 2 mW for ZnO

QDs. PL background is subtracted from the bulk ZnO spectrum. Re-

printed with permission from Ref. 44, K. A. Alim, V. A. Fonoberov, and

A. A. Balandin. Appl. Phys. Lett., 86, 053103 (2005). # 2005, American

Institute of Physics.
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and M2¼�0.08 cm�1. By fitting of the experimental data

shown in Figure 17 (area¼ 1.6 mm2) with Eq. (1), the LO

phonon frequency at T¼ 0 K, x0, was found to be

577 cm�1. At the same time, it followed from Eq. (1) that

the observed 14-cm�1 red shift shown in Figure 17 indeed

corresponded to ZnO heated to the temperature of about

7008C.

Thus, we have clarified the origin of the phonon peak

shifts in ZnO QDs. By using nonresonant and resonant

Raman spectroscopy, we have determined that there are

three factors contributing to the observed peak shifts. They

are the optical phonon confinement by the QD boundaries,

the phonon localization by defects or impurities, and the

laser-induced heating in nanostructure ensembles. While

the first two factors were found to result in phonon peak

shifts of a few cm�1, the third factor, laser-induced heat-

ing, could result in the resonant Raman peak red shift as

large as tens of cm�1.

6. PHOTOLUMINESCENCE SPECTROSCOPY
OF ZINC OXIDE QUANTUM DOTS

There have been a large number of experimental studies of

PL spectra of ZnO QDs. There is noticeable discrepancy

in the interpretation of UV emission from ZnO QDs. Part

of this discrepancy can be attributed to the differences in

ZnO QD synthesis and surface treatment and encapsula-

tion. Another part can be related to the fact that the

physics of the carrier recombination in ZnO QDs may

indeed be different due to some specifics of the material

system, such as low dielectric constant, wurtzite crystal

lattice, and large exciton-binding energy. While most of

the reports indicated that very low-temperature (*10 K)

UV emission in ZnO is due to the donor-bound excitons,

there is no agreement about the mechanism of the emis-

sion at higher temperatures. Various investigations arrived

at different, and sometimes opposite, conclusions about

the origin of UV PL in ZnO nanostructures. For example,

UV PL was attributed to the confined excitons23, 51–55 TO

phonon band of the confined excitons,56, 57 donor-bound

excitons,58, 59 acceptor-bound excitons,60–62 or donor-

acceptor pairs.63–67

In this section, we describe some of the features ob-

served in the UV region of PL spectra obtained from ZnO

QDs with the average diameter of 4 nm synthesized by the

wet chemistry method.44 The size of the large fraction of

the examined QDs is small enough to have quantum

confinement of the charge carriers. Figure 18 shows the

absorbance spectra of ZnO QDs, which indicate a large

blue shift as compared to the bulk band gap of ZnO. In

Figure 19, we present PL spectra of the same ZnO QDs as

the temperature varies from 8.5 K to 150 K. The spectra

were taken under laser excitation with a wavelength of

325 nm. One should keep in mind that the smallest dots,

which lead to the large blue shift in the absorbance spec-

trum, do not contribute to the PL spectra measured under

the 325-nm excitation. Assuming the same order of peaks

as usually observed for bulk ZnO, we can assign the

measured peaks for ZnO QDs (from right to left) to the

donor-bound excitons (D, X), acceptor-bound excitons (A,

X), and LO phonon peak of the acceptor-bound excitons. The

energy of the LO phonon is 72 meV, which is in good

agreement with the reported theoretical and experimen-

tal data.

An arrow in Figure 19 indicates the location of the

confined exciton energy (3.462 eV) calculated by us for

ZnO QDs with a diameter of 4.4 nm. Note that, at a given

laser excitation, the larger size QDs from the ensemble of

4	 0.8 nm are excited; therefore, we attribute the ob-

served PL spectrum to 4.4-nm QDs. No confined exciton

peak is seen at 3.462 eV for the considered temperatures,

which might be explained by the presence of the surface

acceptor impurities in ZnO QDs. The last is not surprising

Fig. 18. Optical absorption spectra of ZnO QDs indicating strong

quantum confinement. Two curves are taken for the same sample (solu-

tion of ZnO QDs) at different times to demonstrate the consistency of the

results.

Fig. 19. PL spectra of ZnO QDs for the temperatures from 8.5 K to

150 K. The location of the confined exciton peak is marked with an arrow.

The spectra are shifted in the vertical direction for clarity.
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given a large surface-to-volume ratio in QDs. It can be

estimated from the ZnO lattice constants (a¼ 0.3249 nm,

c¼ 0.5207 nm) that one atom occupies a volume of a cube

with edge a0¼ 0.228 nm. Therefore, one can estimate that

the number of surface atoms in the 4.4-nm ZnO QD is

about 28% of the total number of atoms in the considered

QDs.

Figures 20 and 21 present PL peak energies and PL peak

intensities of the donor-bound and acceptor-bound exci-

tons, respectively. The data in Figure 20 suggest that the

temperature dependence of the energy of the impurity-

bound excitons can be described by the Varshni law,

similar to the case of bulk ZnO.68 The donor-bound ex-

citon energy in the 4-nm ZnO QDs is increased by about

5 meV compared to the bulk value due to quantum con-

finement of the donor-bound excitons. At the same time,

a comparison of the acceptor-bound exciton energies in

4-nm ZnO QDs and in bulk ZnO shows a decrease of about

10 meV for ZnO QDs at temperatures up to 70 K. The

observed decrease of the energy of the acceptor-bound

excitons in ZnO QDs cannot be explained by confinement.

One possible explanation could be the lowering of the

impurity potential near the QD surface. Another possibil-

ity is that at low temperatures this peak is affected by

some additional binding, similar to that in a charged donor-

acceptor pair.65–67 The energy of a donor-acceptor pair in

bulk ZnO can be calculated as65

EDAP ¼ Eg � Ebind
D � Ebind

A þ e2

4p e0eRDA

ð35Þ

where Eg is the band gap (3.437 eV at 2 K), Ebind
D is the

binding energy of a donor (with respect to the bottom of

the conduction band), Ebind
A is the binding energy of an

acceptor (with respect to the top of valence band), e0 is the

permittivity of free space, e is the electron charge, e¼ 8.1

is the static dielectric constant (inverse average of e? ¼ 7:8

and ek ¼ 8:75), and RDA is the donor-acceptor pair sepa-

ration. Both electrons and holes are confined inside the

ZnO QDs. Therefore, to apply Eq. (35) to ZnO QDs,

one has to take into account the confinement-induced in-

crease of Eg, Ebind
D , and Ebind

A . Since Eg and Ebind
D þ Ebind

A

enter Eq. (35) with the opposite signs, the effect of con-

finement is partially cancelled, and in the first approxi-

mation, one can employ Eq. (35) for ZnO QDs. Note

that Ebind
D is about 60 meV for ZnO [65]. The large per-

centage of surface atoms in the 4.4-nm ZnO QD (28%)

allows one to assume that the majority of the accep-

tors are located at the surface, which is also in agreement

with the theoretical results reported by Fonoberov and

Balandin.30

Due to the relatively small number of atoms (3748) in

the 4.4-nm ZnO QD, it is reasonable to assume that there

are only 1–2 donor-acceptor pairs in such QDs. Indeed, a

typical 1019 cm�3 concentration of acceptors 65, 66 means

only 0.5 acceptors per volume of our 4.4-nm QD. Thus, the

donor-acceptor pair separation RDA is equal to the average

distance from the surface acceptor to the randomly located

donor. This average distance is exactly equal to the radius of

the considered QD. For the observed donor-acceptor pair,

one can find from Eq. (35) 3311 meV¼ 3437 meV�
60 meV� Ebind

A þ 80.8 meV. Therefore, the lower limit of

the acceptor-binding energy is estimated to be Ebind
A ¼

146.8 meV, which is in agreement with the reported values

107–212 meV.64, 67 Note that for bulk ZnO, the donor-

acceptor peak has been observed at 3.216 eV.69

Thus, further study is necessary to determine the origin of

the highest peak in Figure 19 for T < 70 K. While the origin

of low-temperature PL from ZnO QDs can be the same as

for higher temperatures (recombination of acceptor-bound

excitons), the estimation presented suggests that recombi-

nation of donor-acceptor pairs can also be responsible for

the observed peak.
Fig. 20. Peak energies for the donor- and acceptor-bound excitons as a

function of temperature in ZnO QDs.

Fig. 21. Intensities of the donor-bound and acceptor-bound exciton peaks

as the function of temperature in ZnO QDs.
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7. CONCLUSIONS

This review describes exciton states in ZnO QDs in the

intermediate quantum confinement regime. The presented

theoretical results can be used for interpretation of ex-

perimental data. The small radiative lifetime and rather

thick ‘‘dead layer’’ in ZnO QDs are expected to be bene-

ficial for optoelectronic device applications. We described

in detail the origin of UV PL in ZnO QDs, discussing

recombination of confined excitons or surface-bound

acceptor–exciton complexes. The review also outlines the

analytical approach to interface and confined polar optical

phonon modes in spheroidal QDs with wurtzite crystal

structure. The presented theory has been applied to in-

vestigation of phonon frequencies and potentials in sphe-

roidal freestanding ZnO QDs and those embedded into the

MgZnO crystal. A discrete spectrum of frequencies has

been obtained for the interface polar optical phonons in

wurtzite spheroidal QDs. It has been demonstrated that

confined polar optical phonons in wurtzite QDs have dis-

crete spectrum, while the confined polar optical phonons in

zinc blende QDs have a single frequency (LO). The po-

sitions of the polar optical phonons in the measured res-

onant Raman spectra of ZnO QDs were explained

quantitatively using the developed theoretical approach.

The model described in this review allows one to explain

and accurately predict phonon peaks in the Raman spectra

not only for wurtzite ZnO nanocrystals, nanorods, and

epitaxial ZnO/Mg0.2Zn0.8O QDs, but also for any wurtzite

spheroidal QD, either freestanding or embedded into an-

other crystal. In the final section of the review, we outlined

PL in ZnO QDs, focusing on the role of acceptor impu-

rities as the centers of exciton recombination. The results

described in this review are important for the future de-

velopment of ZnO technology and optoelectronic appli-

cations.
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